Generalized averages for solutions of nonlinear systems
نویسندگان
چکیده
منابع مشابه
Generalized averages for solutions of two-point Dirichlet problems
For very general two-point boundary value problems we show that any positive solution satisfies a certain integral relation. As a consequence we obtain some new uniqueness and multiplicity results.
متن کاملPositive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u...
متن کاملSolutions of Nonlinear PDES in the Sense of Averages
We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all p′s. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 < p <∞. Résumé On charactérise les fonctions p-harmoniques, y compris les cas ...
متن کاملpositive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian
in this work, byemploying the leggett-williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u...
متن کاملExplicit Solutions of Generalized Nonlinear Boussinesq Equations
By considering the Adomian decomposition scheme, we solve a generalized Boussinesq equation. The method does not need linearization or weak nonlinearly assumptions. By using this scheme, the solutions are calculated in the form of a convergent power series with easily computable components. The decomposition series analytic solution of the problem is quickly obtained by observing the existence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2003
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(03)80005-5